
Software-defined
Networking

and OpenFlow

Nick McKeown
nickm@stanford.edu

Nick McKeown
nickm@stanford.edu

POMI Workshop, April 2009

OpenFlow team: Nick McKeown, Guido Appenzeller, Guru Parulkar,
Brandon Heller, Glen Gibb, Masayoshi Kobayashi, Tatsuya Yabe, Mikio
Hara, Rob Sherwood, Srini Seetharaman, David Underhill, Dave Erickson.

Part 1: Software-defined networking
• Trend towards defining the network

infrastructure in software
• Requires a simple hardware substrate

Part 2: OpenFlow as an example

Computer

Application

Computer

Application Application

OS

OS abstracts hardware substrate
Innovation in applications

x86
(Computer)

Windows
(OS)

ApplicationApplication

Linux Mac
OS

x86
(Computer)

Windows
(OS) or or

ApplicationApplication

Simple, common, stable, hardware substrate below
+ Programmability
+ Competition

Innovation in OS and applications

Linux Mac
OS

x86
(Computer)

Windows
(OS) or or

ApplicationApplication Windows
(OS)

Windows
(OS)

Linux Mac
OS

x86
(Computer)

Windows
(OS)

AppApp

LinuxLinux
Mac
OS

Mac
OS

Virtualization

App

Simple, common, stable, hardware substrate below
+ Programmability
+ Strong isolation model
+ Competition above

Innovation in infrastructure

A simple stable common substrate

1. Allows applications to flourish
Internet: Stable IPv4 lead to the web

2. Allows the infrastructure on top to be
defined in software
Internet: Routing protocols, management, …

3. Rapid innovation of the infrastructure itself
Internet: ...? What’s missing?

Mid-1990s:
“To enable innovation in the

network, we need to program on
top of a simple hardware

datapath”

Active networking

Problems: isolation, performance,
complexity

Late-1990s:
“To enable innovation in the

network, we need the datapath
substrate to be programmable”

Network processors

Problem: Accelerated complexity
of the datapath substrate

Hardware
Datapath

Software
Control

Router
Million of lines
of source code

5389 RFCs Barrier to entry

500M gates
10Gbytes RAM

Complex Power Hungry

Many complex functions baked into the infrastructure
OSPF, BGP, multicast, differentiated services,
Traffic Engineering, NAT, firewalls, MPLS, redundant layers, …

Very hard to change
Substrate is getting more and more complex

Where we are

(Statement of the obvious)

In networking, despite several attempts…

We’ve never agreed upon a clean separation
between:
1. A simple common hardware substrate
2. And an open programming environment on top

But there are rumblings in large data centers,
and service provider networks.

Observations

Prior attempts have generally
1. Assumed the current IP substrate is fixed,

and tried to program it externally
But the substrate now consists of Ethernet,
TCP, …

2. Defined the programming and control
model up-front

But to pick the right x86 instruction set, Intel
didn’t define Windows XP, Linux or VMware

We need…

A simple hardware substrate that
generalizes, subsumes and simplifies the
current substrate
A clean separation between the substrate
and an open programming environment
Very few preconceived ideas about how
the substrate will be programmed
Strong isolation

Substrate today

PayloadPayloadEthernet
DA, SA, etc
Ethernet

DA, SA, etc
IP

DA, SA, etc
IP

DA, SA, etc
TCP

DP, SP, etc
TCP

DP, SP, etc

Collection of bits to plumb flows
(of different granularities)

between end points

What is a flow?

Application flow
All http
Peter’s traffic
All packets to Canada
…

Types of action

Allow/deny flow
Route & re-route flow
Isolate flow
Make flow private
Remove flow

We need flexible definitions of a flow We don’t need many types of action

1.

Unicast

2.
Multicast

4.

Waypoints
Middleware
Intrusion detection
…

3.
Multipath

Load-balancing
Redundancy

Substrate: “Flowspace”

PayloadPayloadEthernet
DA, SA, etc
Ethernet

DA, SA, etc
IP

DA, SA, etc
IP

DA, SA, etc
TCP

DP, SP, etc
TCP

DP, SP, etc

Collection of bits to plumb flows
(of different granularities)

between end points

PayloadPayloadHeader
User-defined flowspace

Header
User-defined flowspace

Flows: Simple example

IP SA

IP DA

Single flow All flows from A

A

All flows
between two

subnets

Flows: Generalization

Field 2

Field 1

Single flow
Set of flows

Field n

Properties of Flowspace

Backwards compatible
Current layers are a special case

Easily implemented in hardware
e.g. TCAM flow-table in each switch

Strong isolation of flows
Simple geometric construction
Can prove which flows can/cannot
communicate

A substrate

Flow-based
Small number of actions for each flow

Plumbing: Forward to port(s)
Control: Forward to controller
Routing between flow-spaces: Rewrite header
Bandwidth isolation: Min/max rate

External open API to flow-table

Part 1: Software-defined networking
• Trend towards defining the infrastructure in

software
• Requires a simple hardware substrate

Part 2: OpenFlow as an example

New function!

Operators, users, 3rd party developers, researchers, …

Step 1:
Separate intelligence from datapath

Step 2:
Cache decisions in minimal datapath

“If header = x, send to port 4”

Flow
Table
Flow
Table

“If header = ?, send to me”
“If header = y, overwrite header with z, send to ports 5,6”

Our Approach
1. Define the substrate

Define the OpenFlow feature
First version (now): OpenFlow-enabled switches
Make it easy to add to commercial switches, routers,
APs and basestations
Second version (~2yrs): OpenFlow-optimized
switches in general “flowspace”

2. Deploy on college campuses
3. Deploy in national backbone networks
4. Enable researchers to freely innovate on top

OpenFlow Basics

Ethernet SwitchEthernet Switch

Data Path (Hardware)Data Path (Hardware)

Control PathControl PathControl Path (Software)Control Path (Software)

Data Path (Hardware)Data Path (Hardware)

Control PathControl Path OpenFlowOpenFlow

OpenFlowOpenFlow ControllerController

OpenFlow Protocol (SSL)

OpenFlow Basics (1)

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Action Statistics

Rule
(exact & wildcard) Default Action Statistics

Exploit the flow table in switches, routers, and chipsets

Flow 1.

Flow 2.

Flow 3.

Flow N.

Flow Table Entry
OpenFlow Protocol

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

+ mask what fields to match

Packet + byte counters

Examples
Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

00:2e.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Forward

* * * * * * * * 22 drop

Examples
Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * 5.6.7.
8 * * * port6

VLAN

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * vlan1 * * * * *
port6,
port7,
port9

http://OpenFlowSwitch.orghttp://OpenFlowSwitch.org

OpenFlowSwitch.org

Controller

OpenFlow
Switch

PC

OpenFlow Usage
Dedicated OpenFlow Network

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

Peter’s code

Rule Action Statistics

Rule Action Statistics Rule Action Statistics

Peter

Usage examples
Peter’s code:

Static “VLANs”
His own new routing protocol: unicast, multicast, multipath, load-
balancing
Network access control
Home network manager
Mobility manager
Energy manager
Packet processor (in controller)
IPvPeter
Network measurement and visualization
…

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol
OpenFlow
Protocol

OpenFlow FlowVisor
& Policy Control

Craig’s
Controller

Heidi’s
ControllerAaron’s

Controller

OpenFlow
Protocol
OpenFlow
Protocol

Virtualizing OpenFlow

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

OpenFlow
FlowVisor & Policy Control

Broadcast Multicast

OpenFlow
Protocol

http
Load-balancer

Virtualizing OpenFlow

Windows
(OS)

Windows
(OS)

Linux Mac
OS

x86
(Computer)

Windows
(OS)

AppApp

LinuxLinux
Mac
OS

Mac
OS

Virtualization

App

Simple, common, stable, hardware substrate below
+ Programmability
+ Strong isolation model
+ Competition above

Faster innovation

Controller
1

AppApp

Controller
2

Virtualization (FlowVisor)

App

OpenFlow

Controller
1

Controller
1

Controller
2

Controller
2

OpenFlow Status

OpenFlow Hardware

Cisco Catalyst
6k

NEC
IP8800

HP Procurve
5400

Juniper
MX

WiMax (NEC)

PC Engines

Quanta LB4

More
coming soon...

Stanford Deployment

Phase 3 (2H2009)Phase 2 (1H2009)Phase 1 (ongoing)

• Gates Building,
3A Wing onlyTwo
switches
(HP ProCurve 5400)

• ~30 Wireless APs
• ~25 users

• Gates Building,
All Floors

• 23 Switches
(HP ProCurve 5400)

• Wireless TBD
• Hundreds of users

• Packard and CIS
Buildings

• Switch Count TBD
(HP ProCurve 5400)

• Wireless TBD
• > 1000 users

Two Larger OpenFlow Deployments
Campus Trials

At seven leading campuses with researchers and CIO
Potentially 20‐30 campuses to follow

Open up campus networks for innovations
Build robust OpenFlow infrastructure

Nation‐wide OpenFlow substrate – connect campuses
Internet2 backbone and six regional networks
Clean slate inter‐domain system
Unified control of packet and circuit networks

Potentially funded by NSF/GENI in partnership with
campuses, vendors, Internet2/NLR and regionals

Thank You!

	Software-defined Networking�and OpenFlow
	A simple stable common substrate
	Mid-1990s: �“To enable innovation in the network, we need to program on top of a simple hardware datapath”�
	Late-1990s: �“To enable innovation in the network, we need the datapath substrate to be programmable”�
	Where we are
	(Statement of the obvious)
	Observations
	We need…
	Substrate today
	Substrate: “Flowspace”
	Flows: Simple example
	Flows: Generalization
	Properties of Flowspace
	A substrate
	Step 1: �Separate intelligence from datapath
	Step 2: �Cache decisions in minimal datapath
	Our Approach
	OpenFlow Basics
	OpenFlow Basics (1)
	Flow Table Entry�OpenFlow Protocol
	Examples
	Examples
	OpenFlow Usage�Dedicated OpenFlow Network
	Usage examples
	OpenFlow Status
	OpenFlow Hardware
	Stanford Deployment
	Two Larger OpenFlow Deployments

